

Date Planned://_ Actual Date of Attempt://_				Dail	Daily Tutorial Sheet - 7 Level - 2			Expected Duration : 90 Min Exact Duration :		
				_						
6.	Suppose elements X and Y combine to form two compounds XY_2 and X_3Y_2 when 0.1 mole of former									
	weigh 10 g while 0.05 mole of the latter weighs 9 g. What are the atomic weights of X and Y.									
	(A)	40, 30	(B)	60, 40	(C)	20, 30	(D)	30, 20	Ü	
7.	Which statement is false for the balanced equation given below?									
	$CS_2 + 3O_2 \longrightarrow 2SO_2 + CO_2$									
	(A)									
	(B) The reaction of 16 g of oxygen produce 7.33 g of CO ₂									
	(C) The reaction of one mole of O_2 will produce $2/3$ mole of SO_2									
	(D) Six molecules of oxygen requires three molecules of CS ₂									
8.	The hourly energy requirement of an astronaut can be satisfied by the amount of energy released when									
	34 g of sucrose is burnt in his body. How many grams of oxygen would be needed to be carried in space									
	capsule to meet his requirement for one day?									
	(A)	916.2 gm	(B)	91.62 gm	(C)	8.162 gm	(D)	9.162 gm		
9.	5 mL of N-HCl, 20 mL of N/2 \rmH_2SO_4 and 30 mL of N/3 \rmHNO_3 are mixed together and the volume is made									
	to 1 L. The normality of the resulting solution is									
	(A)	N/5	(B)	N/10	(C)	N/20	(D)	N/40		
0.	8 g of sulphur is burnt to form SO_2 which is oxidized by Cl_2 water. The solution is treated with BaCl									
	Solution: The amount of ${\sf BaSO}_4$ precipitated is									
	(A)	1 mole	(B)	0.5 mole	(C)	0.24 mole	(D) 0.	.25 mole		
ι.	10 g of a sample of mixture of ${\rm CaCl}_2$ and ${\rm NaCl}$ is treated to precipitate all the calcium as ${\rm CaCO}_3$. This									
	CaCO ₃ is heated to convert all the Ca to CaO and the final mass of CaO is 1.62 g. The percent by mass of									
	CaCl ₂ in the original mixture is									
	(A)	32.1%	(B)	16.2%	(C)	21.8%	(D)	11.0%		
92.	13.4 g of a sample of unstable hydrated salt $\rm Na_2SO_4 \cdot XH_2O$ was found to contain 6.3 g of $\rm H_2O$. The									
	number of molecules of water of crystallization is									
	(A)	5	(B)	7	(C)	2	(D)	10	J	
3.	A mineral consists of an equimolar mixture of the carbonates of two bivalent metals. One metal is presen									
	to the extent of 15.0 % by weight, 3.0 g of the mineral on heating lost 1.10 g of CO_2 . The percent by									
	weight of other metal is									
	(A)	65	(B)	25	(C)	75	(D)	35	\sim	

which one can make from these two solutions. No water is added.

(A) 1.2 L (B) 1.5 L (C) 1.3 L (D) 1.4 L

95. For the reaction, $2\text{Fe}(\text{NO}_3)_3 + 3\text{Na}_2\text{CO}_3 \longrightarrow \text{Fe}_2(\text{CO}_3)_3 + 6\text{NaNO}_3$ initally 2.5 mole of $\text{Fe}(\text{NO}_3)_2$ and 3.6 mole of Na_2CO_3 are taken. If 6.3 mole of NaNO_3 is obtained then % yield of given reaction is :

(A) 50 (B) 84 (C) 87.5 (D) 100